Kevin Tsang headshot
PhD Title
Application of data-driven technologies for asthma self-management
Funded by
University of Edinburgh College of Medicine and Veterinary Medicine
Supervisors
Dr Syed Ahmar Shah (Edinburgh), Professor Hilary Pinnock (Edinburgh), and Professor Andrew Wilson (UEA)
Based at
University of Edinburgh

Application of data-driven technologies for asthma self-management

Asthma is affecting around 5.4 million people in the UK. Currently, there is no cure for asthma. However existing treatments, such as inhalers, can be used to manage the condition better. The “optimal” self-management strategy should include a personalised asthma action plan supported by regular professional review and self-management education. 

Mobile-health applications (mHealth) have come to the forefront of self-management due to smartphones becoming ubiquitous. Where each device is packed with sensors, connected to the internet, and portable, which allows for non-intrusive monitoring. mHealth can play a role in promoting adherence to the self-management strategy by simplifying and reducing the number of recurring active input required by the patient; while providing passive monitoring throughout the day and appropriately timed alerts. 

The research aims to create a system for a personalised early predictor of asthma exacerbation, consisting of a mobile app, a server and the algorithm. We aim to develop an ML-based algorithm that is capable of learning as more data is collected, in addition to building upon existing research in using low-cost medical devices and wearable devices. This system will allow better self-management by preventing episodes through spotting early warning signs. 

About me

My research interests are machine learning, prediction models and mobile technologies.

© 2015 AUKCAR